Algebra 2 U-46 Curriculum Scope and Sequence

Reporting Strand	Instructional Focus	CCSS	Pacing	
Real & Complex	3.1 Analyze radical functions	A.REI.2 , F.IF.7b , F.IF.9, F.BF.3	1 wooks	
(Radicals)	3.2 Determine complex quadratic roots	N.CN.1, N.CN.2, <u>N.CN.7</u>	4 weeks	
	6.1 Operate with polynomials	A.APR.1, A.APR.4, <u>A.SSE.2</u> , A.SSE.1		
Polynomials	6.2 Explore polynomial factors and zeros	A.SSE.3, <u>A.APR.2</u> , <u>A.APR.3</u> , A.APR.6	5 weeks	
	6.3 Analyze polynomial functions	A.APR.3, F.IF.4, F.IF.7c, F.IF.6, A.CED.1		
Rational	7.1/7.2 Develop and solve rational expressions and equations	A.APR.7, <u>A.REI.2</u> , A.SSE.2	6 weeks	
Relationships	8.1/8.2 Represent and compare rational functions	F.IF.7d , F.IF.5, A.REI.11	0 WEEKS	
Functions	1.2 Explore inverse functions (and compositions)	F.BF.4, <u>F.BF.1c</u>	2 wooko	
Functions	1.3 Explore function transformations	F.IF.7a/b, <u>F.BF.3</u>	- 3 Weeks	
Exponents &	2.1/2.2 Represent and model exponential functions	A.CED.1, <u>F.IF.8</u> , F.LE.5, F.IF.7e, <u>F.BF.3</u> , A.REI.11	Ewooks	
Logarithms	2.3/2.4 Discover and apply logarithms	F.BF.4, F.BF.5, F.LE.4, F.IF.7e, F.BF.3	5 weeks	
Multivariate	5.1 Investigate systems of linear inequalities (contextual situations)	A.CED.2, <u>A.CED.3</u> , A.REI.12	2 wooks	
Inequalities	5.2 Solve nonlinear systems	A.REI.11, A.REI.7	5 WEEKS	
Trigonometry	9.1/9.2 Explore angle measures and the Unit Circle	F.TF.1, F.TF.2 , F.TF.3 , F.TF.8	E une altre	
Ingonometry	9.2/9.3 Represent and apply trigonometric functions	F.IF.7e , F.IF.9, F.TF.5	5 WEEKS	
Probability &	10.1/10.2 Explore and apply rules of conditional probability	S.CP.1, <u>S.CP.2, S.CP.3</u> , S.CP.4, <u>S.CP.5, S.CP.6</u> , <u>S.CP.7, S.CP.8</u> , S.MD.6, S.MD.7	5 weeks	
Statistics	11.1/11.2 Analyze statistical data and explore normal distributions	S.IC.1, S.IC.2, S.IC.3, <u>S.IC.4, S.IC.5, S.IC.6</u> , S.ID.4	5 weeks	

Standards that are **bolded and underlined** are the essential "power standards"

Real & Complex Solutions

3.1 Analyze radical functions

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence	
Solve radical equations (A.REI.2)	Can extend thinking beyond the standard, including tasks	Solve a radical equation with multiple radicals and identify extraneous solutions	Solve a radical equation with a variable on both sides and identify extraneous solutions	Solve a <u>multi-step radical</u> equation	Little evidence of reasoning or	
Graph and interpret radical functions (F.IF.7b)	that may involve one of the following:Designing	 that may involve one of the following: Designing 	Identify the meaning of a point from both graphs <u>and</u> verbal/written descriptions <u>in terms of the context</u>	Identify the meaning of a point from a graph <u>or</u> verbal/written description <u>in terms of the context</u>	Identify the meaning of a point from a graph <u>or</u> verbal/written description	application to solve the problem
Identify Transformations (F.BF.3)	 Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Identify the effect on a graph by replacing $f(x)$ with more than two transformations: f(x) + k, $a f(x)$, f(bx), $f(x + h)$ for specific positive and negative values of the constants a, b, h, and k	Identify the effect on a graph by replacing $f(x)$ with two transformations: f(x) + k, $a f(x)$, f(bx), $f(x + h)$ for specific positive and negative values of the constants a, b, h, and k	Identify the effect on a graph by replacing $f(x)$ with a <u>single</u> transformation: f(x) + k, $a f(x)$, f(bx), $f(x + h)$ for specific positive and negative values of the constants a, b, h, and k	Does not meet the criteria in a level 1	
		Write a function given <u>more than two</u> <u>transformations</u> .	Write a function given <u>two</u> <u>transformations</u> .	Write a function given <u>a</u> <u>transformation</u> .		
Compare key features (F.IF.9)		Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: intercepts domain/range increasing or decreasing <u>positive or negative</u> <u>symmetries</u> <u>end behavior</u>	Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: intercepts domain/range <u>increasing or</u> <u>decreasing</u>	Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: intercepts domain/range		

A.REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

- F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
- F.BF.3 Identify the effect on the graph of replacing f(x) by f(x + k), k f(x), f(kx) and f(x) + k, for specific values of k (both negative and positive); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
- F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

0 – No Evidence Little evidence of reasoning or application to solve the problem

Does not meet the criteria in a level 1

Real & Complex Solutions

	·	•		
ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic
Operations with complex numbers (N.CN.1, N.CN.2)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Use the relation $i^2 = -1$ and the properties of operations to add, subtract <u>and multiply</u> complex numbers and write the solution in standard form	Use the relation $i^2 = -1$ and the properties of operations to add and subtract complex numbers and <u>write the solution in</u> <u>standard form</u>	Use the relation $i^2 = -1$ and the properties of operations to add and subtract complex numbers, <u>but does not write all</u> <u>solutions in standard form</u>
Solve quadratic equations with complex roots (N.CN.7)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Solve quadratic equations with complex roots using both of the following • Quadratic formula • Factoring	Solve quadratic equations with complex roots using one of the following • Quadratic formula • Factoring	Determine if a quadratic has complex or real roots

3.2 Determine complex quadratic roots

N.CN.1 Know there is a complex number *i* such that $i^2 = -1$, and every complex number has the form a + bi with a and b real.

N.CN.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

N.CN.7 Solve quadratic equations with real coefficients that have complex solutions.

Polynomials

6.1 Operate with polynomials

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Operations with polynomials (A.APR.1)	Can extend thinking beyond the standard, including tasks that may	Add, subtract and multiply polynomials with integers within the same problem	Add, subtract and multiply polynomials with integers within the same problemAdd and subtract polynomials with integers and multiply with integersImage: Comparison of the same problem with integers		Little evidence of reasoning or
Rewrite polynomial expressions (A.SSE.2, A.APR.4)	 involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Rewrite polynomial expressions in different equivalent forms by using <u>all of the following:</u> greatest common factors difference of two squares trinomials quadratic-like trinomials (degree 4 or higher) sums or difference of cubes	Rewrite polynomial, rational, and exponential expressions in different equivalent forms by doing <u>4</u> <u>of the following</u> : greatest common factors difference of two squares trinomials quadratic-like trinomials (degree 4 or higher) sums or difference of cubes	Rewrite polynomial, rational, and exponential expressions in different equivalent forms by doing <u>3</u> of the following: greatest common factors difference of two squares trinomials quadratic-like trinomials (degree 4 or higher) sums or difference of cubes	application to solve the problem Does not meet the criteria in a level 1
Interpret expressions (A.SSE.1)		Interpret individual parts of polynomial expressions (such as variables, coefficients, factors, etc.) <u>and explain their meaning</u> <u>in terms of the context</u> Group parts of polynomial expressions and interpret their meaning <u>in terms of</u> <u>the context</u>	Interpret individual parts of polynomial expressions (such as variables, coefficients, factors, etc.) Group parts of a polynomial expressions and interpret their meaning	Identify individual parts of polynomial expressions (such as variables, coefficients, factors, etc.) Identify groups in polynomial expressions	

A.APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

- A.APR.4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x^2 + y^2)^2 = (x^2 y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.
- A.SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 y^4$ as $(x^2)^2 (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 y^2)(x^2 + y^2)$.
- A.SSE.1 Interpret expressions that represent a quantity in terms of its context. \star

a. Interpret parts of an expression, such as terms, factors, and coefficients.

b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P.

Polynomials

6.2 Explore polynomial factors

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Apply the Remainder Theorem (A.APR.2, A.APR.6)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing	Factor a polynomial using either synthetic division or long division, writing $\frac{a(x)}{b(x)}$ in the form $q(x) + \frac{r(x)}{b(x)}$ and identify • if $p(a)$ is zero, then $(x-a)$ is a factor • if $p(a)$ is not zero, then $(x-a)$ is not a factor • $p(a)$ is the remainder when dividing $p(x)$ by x-a. • the remainder is equivalent to $p(a)$	Can perform synthetic or long division <u>correctly and</u> <u>are able to state the</u> <u>remainder, writing</u> $\frac{a(x)}{b(x)}$ in the form $q(x) + \frac{r(x)}{b(x)}$	Can perform synthetic or long division <u>with a</u> <u>structural error, but were</u> <u>able to follow through</u> <u>with their mistake</u>	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Identify zeros (A.APR.3, A.SSE.3)	 Creating Proving 	Identify the zeros of a polynomial using <u>multiple</u> <u>methods of factoring,</u> <u>which may include using</u> <u>synthetic division</u>	Identify the zeros of a polynomial <u>using two</u> <u>methods of factoring</u>	Identify the zeros of a polynomial <u>using a single</u> <u>method of factoring</u>	

- A.APR.2 Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x a is p(a), so p(a) = 0 if and only if (x a) is a factor of p(x).
- A.APR.6 Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
- A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*
 - a. Factor a quadratic expression to reveal the zeros of the function it defines.
- A.APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Polynomials

6.3 Analyze polynomial functions

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify zeros to construct graphs (A.APR.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Identify the zeros of a polynomial function in <u>standard form</u> and use the zeros as one of the criteria to construct a rough graph of the function	Identify the zeros of a polynomial function in <u>factored form</u> and use the zeros of the function as one of the criteria to construct a <u>rough graph of the</u> <u>function</u>	Identify the zeros of a polynomial function in <u>factored form and can only</u> correctly graph the zeros.	Little evidence of reasoning or application to solve
Average rate of change (F.IF.6)	 Designing Connecting Synthesizing Applying 	Calculate the average rate of change over a given interval <u>and explain the</u> <u>meaning in context.</u>	Calculate the average rate of change over a given interval	Describe the average rate of change over a given interval	the problem Does not
Graph and interpret polynomial functions (F.IF.4, E.IF.7c)	 Justifying Critiquing Analyzing Creating Proving 	Graph polynomial functions and <u>interpret all key</u> <u>features</u> of the graph in the context of a situation	Graph polynomial functions and <u>interpret some key</u> <u>features</u> of the graph in the context of a situation	Graph polynomial functions and <u>identify key features</u> of the graph Translate a verbal	meet the criteria in a level 1
Can use technology		description of a relationship to <u>sketch</u> a polynomial graph	description of a graph's key features to <u>sketch</u> a polynomial graph	description of a graph's key features to <u>identify</u> a polynomial graph	
		Identify an appropriate domain <u>based on the</u> <u>context</u> from both graphs <u>and</u> verbal/written descriptions	Identify an appropriate domain <u>based on the</u> <u>context</u> from graphs <u>or</u> verbal/written descriptions	Identify the domain from graphs <u>or</u> verbal/written descriptions	
		Identify the meaning of a point from both graphs <u>and</u> verbal/written descriptions <u>in terms of the context</u>	Identify the meaning of a point from a graph <u>or</u> verbal/written description <u>in terms of the context</u>	Identify the meaning of a point from a graph <u>or</u> verbal/written description	
Create polynomial equations (A.CED.1)		Create a polynomial equation in <u>expanded form</u> given the zeros, multiplicity, and leading coefficient	Create a polynomial equation in factored form given the zeros, <u>multiplicity, and leading</u> <u>coefficient</u>	Create a polynomial equation in <u>factored form</u> given the zeros	

A.APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

- F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*
- F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
- F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
- A.CED.1 Create equations and inequalities in one variable and use them to solve problems.

Rational Relationships

7.1/7.2 Develop and solve rational expressions and equations

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Operations with rational expressions (A.APR.7)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing	Add, subtract, multiply and divide rational expressions, <u>using multiple operations,</u> simplifying the expression <u>and</u> identifying any restricted values	Add, subtract, multiply and divide rational expressions, simplifying the expression <u>or</u> identifying any restricted values	Add, subtract, multiply <u>or</u> divide rational expressions <u>(Can perform 2 of the 4),</u> simplifying the expression <u>or</u> identifying any restricted values	Little evidence of reasoning or application to solve the
Solve rational equations (A.REI.2)	 Connecting Synthesizing Applying Justifying Critiquing Analyzing 	Solve a rational equation <u>involving factoring</u> and identify extraneous solutions	Solve a rational equation and identify extraneous solutions	Solve a rational equation that is a proportion.	problem Does not meet the criteria in a level 1
Rewrite polynomial expressions (A.SSE.2)	 Proving 	Rewrite polynomial expressions in different equivalent forms by using <u>all of the following:</u> • greatest common factors • difference of two squares • trinomials • quadratic-like trinomials (degree 4 or higher) • sums or difference of cubes	Rewrite polynomial, rational, and exponential expressions in different equivalent forms by doing <u>4</u> <u>of the following</u> : greatest common factors difference of two squares trinomials quadratic-like trinomials (degree 4 or higher) sums or difference of cubes	Rewrite polynomial, rational, and exponential expressions in different equivalent forms by doing <u>3</u> <u>of the following</u> : greatest common factors difference of two squares trinomials quadratic-like trinomials (degree 4 or higher) sums or difference of cubes	

A.APR.7 Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

A.REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

A.SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.

Rational Relationships

8.1/8.2 Represent and compare rational functions

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Graph and identify key features of rational functions (F.IF.5, F.IF.7d)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing	Graph rational functions, given the model, and interpret all related key features of a graph <u>in</u> <u>context of a real world</u> <u>situation</u> . • zeros • asymptotes • intercepts • holes • end behavior • domain	Graph rational functions, given the model, and identify all related key features of a graph. • zeros • asymptotes • intercepts • holes • end behavior • domain	Given the graphs of rational, exponential, logarithmic and trigonometric functions, and identify all related key features of a graph. 2 zeros asymptotes intercepts holes end behavior domain	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a
Explain intersec- tion points (A.REI.11)	 Analyzing Creating Proving 	For rational functions find intersection points using technology, graphs, and tables and <u>explain in the</u> <u>context of a situation</u>	For rational functions find intersection points using technology, graphs, <u>and</u> tables	For rational functions find intersection points using technology, graphs <u>or</u> tables	

- F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
- F.IF.7d Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases
 d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
- A.REI.11 Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*

Functions

1.2 Explore inverse functions (and compositions)

	4 - Mastory	2 - Proficient	2 Basic	1 - Bolow Basic	0 – No
CC33	4 – Wastery	3 – Froncient	Z - Dasic	I - Below Basic	Evidence
Produce	Can extend	Can do <u>all</u> of the following:	Can do <u>2</u> of the following:	Can do <u>1</u> of the following:	Little
inverse	thinking beyond	 Read values of an 	 Read values of an 	 Read values of an 	evidence of
functions	the standard,	inverse function	inverse function	inverse function	reasoning
(F.BF.4)	including tasks	from a graph and	from a graph and	from a graph and	or
	that may involve	table	table	table	application
	one of the	Given a simple	Given a simple	Given a simple	to solve the
	following:	function, find its	function, find its	function, find its	problem
		inverse	inverse	inverse	
	 Designing 	Compose	Compose	Compose	Does not
	 Connecting 	functions to verify	functions to verify	functions to verify	meet the
	 Synthesizing 	if one function is	if one function is	if one function is	criteria in a
	 Applying 	the inverse of	the inverse of	the inverse of	level 1
	 Justifying 	another function	another function	another function	
	Critiquing				
	 Analyzing 				
Evaluate	Creating	Evaluate the composition of	Evaluate the composition of	Evaluate a function for a	
composed	 Proving 	2 functions in context of a	2 functions	given value and use that	
functions		<u>situation</u>		result to evaluate a second	
(F.BF.1c)				function	

F.BF.4 Find inverse functions.

a. (+)Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2 x_3$ or f(x) = (x+1)/(x-1) for $x \neq 1$.

b. (+) Verify by composition that one function is the inverse of another.

c. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.

F.BF.1c Write a function that describes a relationship between two quantities.

c. (+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.

Functions

1.3 Explore function transformations

	4 – Mastery	3 – Proficient	2 - Basic	1 - Below Basic	0 – No
CCSS	4 Wastery	5 Honclent	2 - Dasie	1 Delow basic	Evidence
Identify	Can extend	Identify the effect on a	Identify the effect on a	Identify the effect on a	Little
transform-	thinking beyond	graph by replacing f(x) with	graph by replacing f(x) with	graph by replacing f(x) with	evidence
ations and	the standard,	more than two	transformations:	a <u>single</u> transformation:	of
key	including tasks	transformations:	f(x) + k, a f(x),	f(x) + k, a f(x),	reasoning
features of	that may involve	f(x) + k, a f(x),	<i>f</i> (<i>bx</i>), <i>f</i> (<i>x</i> + <i>h</i>) for specific	f(bx), f(x + h) for specific	or
graphs	one of the	f(bx), f(x + h) for specific	positive and negative values	positive and negative values	application
(F.IF.7a/b,	following:	positive and negative values	of the constants a, b, h, and	of the constants a, b, h, and	to solve
F.BF.3)		of the constants a, b, h, and	k	k	the
	 Designing 	k			problem
	Connecting				
	 Synthesizing 	Write a function given more	Write a function given <u>two</u>	Write a function given <u>a</u>	Does not
	 Annlying 	than two transformations.	transformations.	transformation.	meet the
	 Iustifving 				criteria in
	 Critiquing 	Graph function	Graph function	Given the graphs of	a level 1
	 Analyzing 	transformations (quadratics,	transformations	functions (quadratics,	
	Creating	square root, cube root,	(quadratics, square root,	square root, cube root,	
	 Proving 	linear, absolute value) and	cube root, linear, absolute	linear, absolute value)	
		identify all related key	value) and identify all	identify all related key	
		features of a graph in	related key features of a	features of a graph.	
		context of a situation.	graph.	 lines of symmetry 	
		 lines of symmetry 	 lines of symmetry 	 intercepts 	
		 intercepts 	 intercepts 	 domain/range 	
		 domain/range 	 domain/range 		

F.IF.7a/b Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

- a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
- b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
- F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

Exponents & Logarithms

2.1/2.2 Represent and model exponential functions

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Create and solve exponent- tial functions (A.CED.1)	Can extend thinking beyond the standard, including tasks	Create exponential equations <u>and use them in</u> <u>a contextual situations to</u> <u>solve problems.</u>	<u>Create</u> exponential equations to model a contextual situation.	Identify exponential equations to model a contextual situation.	Little evidence of reasoning
Rewrite and solve exponent- tial functions (F.IF.8)	 Designing Connecting Synthesizing 	Write an exponential function in equivalent forms to reveal key features (ie. rate of change, decay, growth) and use them in a contextual situation to solve problems.	Identify key features (ie. rate of change, decay, growth) from a function <u>and</u> <u>interpret the features in</u> <u>context of the situation.</u>	Identify key features (ie. rate of change, decay, growth) from a function	or application to solve the problem
Graph, interpret exponential functions (F.IF.7e, F.LE.5) *Can use technology for more complex cases*	 Appying Justifying Critiquing Analyzing Creating Proving 	Graph exponential functions and <u>interpret all</u> <u>key features</u> of the graph in the context of a situation	Graph exponential functions and <u>interpret some key</u> <u>features of the graph in the</u> <u>context of a situation</u>	Graph exponential and logarithmic functions and <u>identify key features</u> of the graph	Does not meet the criteria in a level 1
Identify transformations (F.BF.3)		Identify the effect on a graph by replacing $f(x)$ with <u>more than two</u> transformations: f(x) + k, $a f(x)$, f(bx), $f(x + h)$ for specific positive and negative values of the constants a, b, h, and k Write a function given <u>more than two</u> <u>transformations</u> .	Identify the effect on a graph by replacing $f(x)$ with <u>two</u> transformations: f(x) + k, $a f(x)$, f(bx), $f(x + h)$ for specific positive and negative values of the constants a, b, h, and k Write a function given <u>two transformations</u> .	Identify the effect on a graph by replacing $f(x)$ with a <u>single</u> transformation: f(x) + k, $a f(x)$, f(bx), $f(x + h)$ for specific positive and negative values of the constants a, b, h, and k Write a function given <u>a</u> <u>transformation</u> .	
Find intersection points involving exponential functions (A.REI.11)		For exponential functions, find intersection points using technology, graphs, and tables and <u>explain in</u> <u>the context of a situation</u>	For exponential functions, find intersection points using technology, graphs, <u>and</u> tables	For exponential functions, find intersection points using technology, graphs <u>or</u> tables	

F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)12^t$, $y = (1.2)^t/10$, and classify them as representing exponential growth or decay.

F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases

e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context.

A.CED.1 Create equations and inequalities in one variable and use them to solve problems. *Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*

A.REI.11 Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*

F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Exponents & Logarithms

2.5/2.4 Discover and apply logarithin	2.3	3/2.4	4 Discover	and	apply	logarithms
---------------------------------------	-----	-------	------------	-----	-------	------------

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No
	· mastery		2 20010		Evidence
Solve	Can extend	Use the inverse	Use the inverse	Rewrite logarithmic and	Little
exponential	thinking beyond	relationship of	relationship of	exponential functions as	evidence
and logarithmic	the standard,	logarithmic and	logarithmic and	<u>inverses</u>	of
equations	including tasks	exponential functions to	exponential functions to		reasoning
(F.BF.4, F.BF.5,	that may involve	solve problems <u>in</u>	solve problems.		or
F.LE.4)	one of the	contextual situations.			application
	following:				to solve
Graph and		Graph logarithmic	Graph logarithmic	Graph logarithmic	the
interpret log	 Designing 	functions and interpret	functions and interpret	functions and <i>identify</i>	nrohlem
functions	Connecting	all key features of the	some key features of the	key features of the graph	problem
(F.IF.7e)	 Synthesizing 	graph in the context of a	graph in the context of a		Doos not
*Can use technology for more complex	 Applying 	situation	situation		meet the
cases*	 Justifving 				criteria in
Identify	Critiquing	Identify the effect on a	Identify the effect on a	Identify the effect on a	a level 1
transformations	 Analyzing 	graph by replacing f(x)	graph by replacing f(x)	graph by replacing f(x)	
(F.BF.3)	 Creating 	with more than two	with <u>two</u>	with a <u>single</u>	
	 Proving 	transformations:	transformations:	transformation:	
		f(x) + k, a f(x),	f(x) + k, a f(x),	f(x) + k, $a f(x)$,	
		f(bx), $f(x + h)$ for specific	f(bx), $f(x + h)$ for specific	f(bx), f(x + h) for specific	
		positive and negative	positive and negative	positive and negative	
		values of the constants a.	values of the constants a.	values of the constants a.	
		h h and k	h h and k	h h and k	
		Write a function given	Write a function given	Write a function given <u>a</u>	
		more than two	two transformations.	transformation.	
		transformations.			

F.IF.7e Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases e. Graph exponential and logarithmic functions, showing intercents and end behavior, and trigonometric functions, showing

e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

- F.LE.4. For exponential models, express as a logarithm the solution to ab^{ct} = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.
- F.BF.4 Find inverse functions. a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.
- F.BF.5 (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
- F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Multivariate Equations & Inequalities

5.	1 Investigate s	vstems of	linear inec	ualities (contextual	situations	۱
э.	I milestigate s	ysterns or	micui micu	Juantics	Contextual	Situations	1

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify, graph, and interpret solutions of systems of inequalities (A.CED.3, A.CED.2, A.REI.12)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Create and graph a system of inequalities for contextual situations Interpret solutions <u>as viable</u> <u>or nonviable options</u> in context of the situation (maximizing/minimizing)	<u>Create and graph</u> a system of inequalities for contextual situations Interpret solutions <u>in</u> <u>context of the situation.</u>	Identify a system of inequalities for contextual situations Identify solutions	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

- A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
- A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Multivariate Equations & Inequalities

5.2 Solve nonlinear systems

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Solve non- linear systems (A.REI.11)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing	For polynomial, rational, absolute value, exponential, and logarithmic functions, find intersection points using technology, graphs, and tables and <u>explain in the</u> <u>context of a situation.</u>	For polynomials, rational, absolute value, exponential, and logarithmic functions, find intersection points using technology, graphs, <u>and</u> tables	For polynomial, rational, absolute value, exponential, and logarithmic functions, find intersection points using technology, graphs <u>or</u> tables	Little evidence of reasoning or application to solve the problem
Solve systems of linear and quadratic equations (A.REI.7)	 Applying Justifying Critiquing Analyzing Creating Proving 	Solve a system of a linear equation and quadratic equation in two variables algebraically, <u>when</u> <u>completing the square is</u> <u>necessary</u> .	Solve a system of a linear equation and quadratic equation in two variables algebraically, <u>when having</u> <u>to solve for y</u> .	Solve a system of a linear equation and quadratic equation in two variables algebraically, <u>when one</u> <u>equation is solved for y</u> .	Does not meet the criteria in a level 1

- A.REI.11 Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar
- A.REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = -3x and the circle x2 + y2 = 3.

Trigonometry 9.1/9.2 Explore angle measures and the unit circle

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Understand radians (F.TF.1)	Can extend thinking beyond the standard, including tasks that may involve one of the	Explain and use the relationship between radian measures and degrees/arc lengths to solve problems	Use the relationship between radian measures and degrees/arc lengths to solve problems	Convert between radians and degrees	Little evidence of reasoning or
Create the unit circle (F.TF.2, F.TF.3)	 following: Designing Connecting Synthesizing Applying Justifying 	Use special triangles to determine <u>and explain</u> the values of sine, cosine, tangent for <u>anything</u> <u>between 0 and 2n</u> on the unit circle	Use special right triangles to determine the values of sine, cosine, tangent for $\underline{0}$, $\pi/6$, $\pi/4$, $\pi/3$ and $\underline{\pi/2}$ on the unit circle	Use special right triangles to determine the values of sine, cosine and tangent <u>for</u> $\pi/6, \pi/4$ and $\pi/3$ on the unit circle	application to solve the problem Does not meet the criteria in
Pythagorean identity of sine and cosine (F.TF.8)	 Critiquing Analyzing Creating Proving 	<u>Prove</u> the Pythagorean identity $sin^{2}(\theta) + cos^{2}(\theta) =$ 1 and use it to find $sin(\theta)$, $cos(\theta)$, and $tan(\theta)$	Use the Pythagorean identity $sin^2(\theta) + cos^2(\theta) =$ 1 to find $sin(\theta)$, $cos(\theta)$, <u>and</u> $tan(\theta)$	Use the Pythagorean identity $sin^{2}(\theta) + cos^{2}(\theta) =$ 1 to find $sin(\theta), cos(\theta), or$ $tan(\theta)$	a level 1

- F.TF.1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
- F.TF.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
- F.TF.3 (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x$, $\pi+x$, and $2\pi-x$ in terms of their values for x, where x is any real number.
- F.TF.8 Prove the Pythagorean identity $sin^2(\theta) + cos^2(\theta) = 1$ and use it to find $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ given $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ and the quadrant of the angle.

Summatively assess after completing Explore and Investigation 1 in Concept 9.2 The remaining portion of Concept 9.2 is within Represent and Apply Trigonometric Functions

Trigonometry 9.2/9.3 Represent and apply trigonometric functions

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Create trigonometric functions (F.TF.5)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Given a specified amplitude, frequency, and midline for a real world situation, <u>create a sine,</u> <u>cosine and/or tangent</u> <u>function</u>	Given the sine, cosine or tangent function for a real world situation, identify the amplitude, frequency <u>and</u> midline	Given the sine, cosine or tangent function for a real world situation, identify the amplitude, frequency <u>or</u> midline	Little evidence of reasoning or application
Graph and identify key features of trig functions (F.IF.7e) Compare key features (F.IF.9)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Graph a sine, cosine, <u>and</u> <u>tangent</u> function, with an amplitude change, period change, and midline change. Compare key features of two functions represented • algebraically • graphically • numerically in tables • verbal descriptions <u>in context of a situation</u> Key features include: • midline • amplitude • minimums and maximums	Graph a sine and cosine function with an amplitude change, period change, <u>and</u> midline change. Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: midline amplitude <u>minimum and</u> <u>maximums</u> increasing or <u>decreasing</u>	Graph a sine and cosine function with an amplitude change, period change, <u>or</u> midline change. Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: midline amplitude	to solve the problem Does not meet the criteria in a level 1

F.TF.5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

F.IF.7e Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Probability & Statistics

10.1/10.2 Explore and apply rules of conditional probability

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Describe sample space (S.CP.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Describe events within the sample space using characteristics <u>or as unions,</u> <u>intersections, or</u> <u>complements of other</u> <u>events (with and without</u> <u>notation)</u> Recognize, determine <u>and</u> <u>use</u> independent and	Describe events within the sample space using characteristics	Identify events in a sample space Recognize and determine independent probability in	Little evidence of reasoning or application to solve the problem
conditional probability (S.CP.2, S.CP.3, S.CP.5, S.CP.6, S.MD.6, S.MD.7)	 Designing Connecting Synthesizing Applying Justifying Critiquing 	conditional probability in contextual problems Apply probability concepts to <u>analyze and make fair</u> <u>decisions</u> related to real- world situations	<u>conditional probability</u> in contextual problems	contextual problems.	Does not meet the criteria in a level 1
Construct frequency tables (S.CP.4)	Creating Proving	Construct a two-way frequency table for data, use the table to determine independence, <u>and</u> calculate conditional probabilities from the table	Construct a two-way frequency table for data <u>and use the table</u> to determine independence <u>or</u> calculate conditional probabilities from the table	<u>Construct a two-way</u> <u>frequency table</u> for data	
Apply rules of probability (S.CP.7, S.CP.8)		Apply the addition and multiplication rules in a probability model <u>and</u> <u>interpret the answer in</u> <u>context of the situation</u>	Apply the addition <u>and</u> multiplication rules in a probability model	Apply the addition <u>or</u> multiplication rules in a probability model	

- S.CP.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
- S.CP.2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
- S.CP.3. Understand the conditional probability of *A* given *B* as *P*(*A* and *B*)/*P*(*B*), and interpret independence of *A* and *B* as saying that the conditional probability of *A* given *B* is the same as the probability of *A*, and the conditional probability of *B* given *A* is the same as the probability of *B*.
- S.CP.4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the twoway table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.
- S.CP.5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.
- S.CP.6. Find the conditional probability of *A* given *B* as the fraction of *B*'s outcomes that also belong to *A*, and interpret the answer in terms of the model.
- S.CP.7. Apply the Addition Rule, P(A or B) = P(A) + P(B) P(A and B), and interpret the answer in terms of the model.
- S.CP.8. (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model.
- S.MD.6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
- S.MD.7. (+) Analyze decisions and strategies using probability concepts (e.g.product testing, medical testing, pulling a hockey goalie at the end of a game).

Probability & Statistics

11.1/11.2 Analyze statistical data and explore normal distributions

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Understand statistical data and models (S.IC.1, S.IC.2, S.IC.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying	Use sample data to make inferences about a population Explain using randomization why a sample survey, experiment or observational study is most appropriate Decide if data models are consistent with the results	Use sample data to make inferences about a population Determine whether a sample survey, experiment or observational study is most appropriate Determine whether experimental probabilities match given theoretical probabilities	Identify when sample data can be used to make inferences about a population Identify whether a given scenario represents a sample survey, experiment or observational study Identify experimental and theoretical probabilities	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a
Use data (S.IC.4, S.IC.5, S.IC.6, S.ID.4)	 Critiquing Analyzing Creating Proving 	 Can do <u>all</u> of the following: Use data from a sample survey to estimate a population mean or proportion Develop a margin of error through the use of simulation models for random sampling. Use data from a randomized experiment to compare two treatments Use simulations to decide if differences between parameters are significant. Evaluate reports based on data. Uses the means and standard deviations of data sets to fit them to normal distributions Fits functions to data in order to solve contextual problems 	 Can do <u>five</u> of the following: Use data from a sample survey to estimate a population mean or proportion Develop a margin of error through the use of simulation models for random sampling. Use data from a randomized experiment to compare two treatments Use simulations to decide if differences between parameters are significant. Evaluate reports based on data. Uses the means and standard deviations of data sets to fit them to normal distributions Fits functions to data in order to solve 	 Can do <u>four</u> of the following: Use data from a sample survey to estimate a population mean or proportion Develop a margin of error through the use of simulation models for random sampling. Use data from a randomized experiment to compare two treatments Use simulations to decide if differences between parameters are significant. Evaluate reports based on data. Uses the means and standard deviations of data sets to fit them to normal distributions Fits functions to data in order to solve 	ievel 1

S.IC.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.

S.IC.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.
 S.IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how rais

S.IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

S.IC.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

S.IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

S.IC.6 Evaluate reports based on data.

S.ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.